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Abstract We investigate the complexity of the hydrogenic identity SN 2 exchange
reaction by means of information-theoretic functionals such as disequilibrium (D),
exponential entropy (L), Fisher information (I), power entropy (J) and joint informa-
tion-theoretic measures, i.e., the I–D, D–L and I–J planes and the Fisher–Shannon
(FS) and López-Mancini-Calbet (LMC) shape complexities. The several informa-
tion-theoretic measures of the one-particle density were computed in position (r) and
momentum (p) spaces. The analysis revealed that the chemically significant regions
of this reaction can be identified through most of the information-theoretic functionals
or planes, not only the ones which are commonly revealed by the energy, such as the
reactant/product (R/P) and the transition state (TS), but also those that are not pres-
ent in the energy profile such as the bond cleavage energy region (BCER), the bond
breaking/forming regions (B–B/F) and the charge transfer process (CT). The analy-
sis of the complexities shows that the energy profile of the identity SN 2 exchange
reaction bears no simple behavior with respect to the LMC and FS measures. Most
of the chemical features of interest (BCER, B–B/F and CT) are only revealed when
particular information-theoretic aspects of localizability (L or J), uniformity (D) and
disorder (I) are considered.
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1 Introduction

The application of complexity concepts in physical sciences has acquired increasing
interest over the last years. Since the definition of complexity is not unique, its quan-
titative characterization has been an important subject of research and it has received
considerable attention [1–9]. For instance, Anteneodo and Plastino [10] have discussed
several notions of complexity and noted that there is not yet a consensus on a precise
definition. Thus, the term complexity has been referred to different meanings estab-
lished prior to the recent attempts to use it as indicative for structure in natural systems.
For example, Kolmogorov [1,2] complexity or algorithmic information theory [11]
are understood from the point of view of the information content of a string, which is
equivalent to the length of the shortest possible self-contained representation of that
string which is essentially a program. Further, computational complexity theory has
been focused on classifying computational problems according to their inherent dif-
ficulty, measuring the amounts of resources required for the execution of algorithms
[12]. In contrast, statistical complexity theory [8] refers to the measure of the random-
ness and unpredictability of a system which adequately captures the correlation of the
system’s components in its behavior. Roughly speaking, the larger and more intricate
the “correlations” between the system’s constituents, the more structured its underly-
ing probability distribution. A comprehensive study of the application of complexity
measures on atoms and molecules has been recently published [13].

Fundamental concepts such as uncertainty or randomness are frequently employed
in the definitions of complexity, although some other concepts like clustering, order,
localization or organization might be also important for characterizing the complexity
of systems and processes as general indicators of pattern, structure and correlation.
It is not clear how the aforementioned concepts might intervene in the definitions
so as to quantitatively assess the complexity of the system. However, recent propos-
als have formulated this quantity as a product of two factors, taking into account
order/disequilibrium and delocalization/uncertainty. This is the case of the definition
of López-Mancini-Calbet (LMC) shape complexity [8–10] that, like others, satisfies
the boundary conditions by reaching its minimal value in the extreme ordered and
disordered limits.

The LMC complexity measure has been criticized [10,18,19], modified and gen-
eralized [21] leading to a useful estimator which satisfies several desirable properties
of invariance under scaling transformations, translation, and replication [22,24]. The
utility of this improved complexity has been verified in many fields [15–17] and allows
reliable detection of periodic, quasiperiodic, linear stochastic, and chaotic dynamics
[22–24]. The LMC measure is constructed as the product of two important infor-
mation-theoretic quantities (see below): the so-called disequilibrium D (also known
as self-similarity [25] or information energy [26]), which quantifies the departure of
the probability density from uniformity [18,19,23] (equiprobability) and the Shannon
entropy S, which is a general measure of randomness/uncertainty of the probability
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density [3], and quantifies the departure of the probability density from localizability.
Both global quantities are closely related to the measure of spread of a probability
distribution. On the other hand the Fisher-Shannon product FS has been employed
as a measure of atomic correlation [27] and also defined as a statistical complexity
measure [28–31]. The product of the power entropy J -explicitly defined in terms of
the Shannon entropy - and the Fisher information measure, I, combine both the global
character (depending on the distribution as a whole) and the local one (in terms of
the gradient of the distribution), to preserve the general complexity properties. As
compared to the LMC complexity, aside of the explicit dependence on the Shannon
entropy which serves to measure the uncertainty (localizability) of the distribution, the
Fisher-Shannon complexity replaces the disequilibrium global factor D by the Fisher
local one to quantify the departure of the probability density from disorder [4,5] of a
given system through the gradient of the distribution.

From a different perspective, the energetics of chemical reactions [32] has been
the focus of quantum chemistry studies over the last decades. For instance, a variety
of calculations of potential energy surfaces have been performed at various levels of
sophistication [33]. Within the broad scope of these investigations, particular interest
has been focused on extracting information about the stationary points of the energy
surface. Despite the fact that minima, maxima, and saddle points are useful math-
ematical features of the energy surface to reaction-path following [34], it has been
difficult to attribute too much chemical or physical meaning to these critical points
[35]. Whereas the reaction rate and the reaction barrier are chemical concepts, which
have been rigorously defined and experimentally studied since the early days of the
transition state (TS) theory [36,37] the structure of the TS remains as a quest of physical
organic chemistry. Understanding the TS is a fundamental goal of chemical reactivity
theories, which implies the knowledge of the chemical events that take place to better
understand the kinetics and the dynamics of a reaction. On the other hand, a variety of
density descriptors have been employed to study chemical reactions [36–39]; among
them, it is worthy to mention the reaction force studies on the potential energy of
reactions, which characterize changes in the structural and/or electronic properties
in chemical reactions [40–46]. In past years, there has been an increasing interest
to analyze the electronic structure of atoms and molecules by applying information
theory (IT) [47–67]. In more recent studies we have shown that information-theoretic
measures are capable of providing simple pictorial chemical descriptions of atoms
and molecules. For instance, theoretic-information analyses have shown useful to
describe phenomenologically the course of elementary chemical reactions through
the localized/delocalized behavior of the electron densities in position and momen-
tum spaces by revealing important chemical regions that are not present in the energy
profile such as the ones in which bond forming and bond breaking occur and also the
bond cleavage energy regions (BCER) [68]. Furthermore, the synchronous reaction
mechanism of a SN 2 type chemical reaction and the non-synchronous behavior of
the simplest hydrogen abstraction reaction were predicted by use of Shannon entro-
pies analysis [69]. Also, the chemical phenomena of B-B/F was recently studied by
the Fisher information measure for both reactions showing that this local measure in
momentum space is highly sensitive in detecting these chemical events, whereas the
one in position space is able to detect differences in their mechanisms [70]. In a very
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recent study on the complexity of the hydrogenic abstraction reaction [71], we have
employed the information-theoretic functionals D, L, I, J and joint information-the-
oretic measures, i.e., the I-D, D-L and I-J planes and the Fisher-Shannon and LMC
shape complexities. These measures were found to reveal all the chemically significant
aspects of the course of the reaction, i.e., the reactant/product regions, the bond cleav-
age energy region, the bond breaking/forming region and the transition state. Besides,
the information-theoretic concepts of uniformity, disorder, localizability were useful
to reveal the chemical phenomena of energy accumulation/releasing and to identify
the mechanisms for bond forming and spin coupling.

Throughout the present study we intend to enrich the theory of chemical reactions
within the framework of Information Theory by use of complexity measures (LMC
and FS) and information planes for the hydrogenic identity SN 2 exchange reaction.
The study is organized as follows, in Sect. 2 we define the complexity measures along
with their information-theoretic components. In Sect. 3 we calculate the information
components as well as the Fisher-Shannon and LMC complexities. These informa-
tion-theoretic functionals of the one-particle density are computed in position (r),
momentum (p) as well as in the joint product space (rp) that contains more complete
information about the system. Besides, the Fisher-Shannon (I–J), the disequilibrium-
Shannon (D–L) and Fisher-disequilibrium (I–D) planes are studied. Finally, in Sect.
4, some conclusions are given.

2 Theoretical details

2.1 Information-theoretic measures and complexities

In the independent-particle approximation, the total density distribution in a molecule
is a sum of the contributions from the electrons in each of the occupied orbitals. This is
the case in both r - and p-spaces, position and momentum respectively. In momentum
space, the total electron density, γ (p), is obtained through the molecular momen-
tals (momentum-space orbitals) ϕ(p), and similarly for the position density, ρ(r),
through the molecular position-space orbitals φ(r). The momentals (atomic units are
employed throughout) can be obtained by three-dimensional Fourier transformation
of the corresponding orbitals (and conversely)

ϕi (p) = (2π)−3/2
∫

dr exp(−ip · r)φi (r) (1)

Standard procedures for the Fourier transformation of position space orbitals gener-
ated by ab-initio methods have been described [72]. The orbitals employed in ab-initio
methods are linear combinations of atomic basis functions and since analytic expres-
sions are known for the Fourier transforms of such basis functions [73], the transfor-
mation of the total molecular electronic wavefunction from position to momentum
space is computationally straightforward [74].

As we mentioned in the introduction, the LMC complexity is defined through
the product of two relevant information-theoretic measures. So that, for a given
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probability density in position space, ρ(r), the C(LMC) complexity is given by
[8,19]:

Cr (LMC) = Dr eSr = Dr Lr (2)

where Dr is the disequilibrium [25,26]

Dr =
∫

ρ2(r)dr (3)

and S is the Shannon entropy [3]

Sr = −
∫

ρ(r)lnρ(r)dr (4)

from wich the exponential entropy Lr = eSr is defined. Similar expressions for the
LMC complexity measure in the conjugated momentum space might be defined for a
distribution γ (p)

C p(L MC) = DpeSp = Dp L p (5)

It is important to mention that the LMC complexity of a system must comply with
the following lower bound [75]:

C(LMC) ≥ 1 (6)

The FS complexity in position space, Cr (FS), is defined in terms of the product of
the Fisher information [4,5]

Ir =
∫

ρ(r)|−→∇ lnρ(r)|2dr (7)

and the power entropy [28–31] in position space, Jr

Jr = 1

2πe
e

2
n Sr (8)

which depends on the Shannon entropy defined above. So that, the FS complexity in
position space is given by

Cr (FS) = Ir · Jr (9)

and similarly
C p(FS) = Ip · Jp (10)

in momentum space.
Let us remark that the factors in the power Shannon entropy J are chosen to preserve

the invariance under scaling transformations, as well as the rigorous relationship [76].

C(FS) ≥ n (11)
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with n being the space dimensionality, thus providing a universal lower bound to FS
complexity. The definition in Eq. (8) corresponds to the particular case n=3 (atoms
and molecules), the exponent containing a factor 2/n for arbitrary dimensionality. See
[77] for further rigorous bounds on complexity measures and uncertainty products.

It is worthwhile noting that the aforementioned inequalities remain valid for dis-
tributions normalized to unity, which is the choice that it is employed throughout this
work for the 3-dimensional molecular case.

Aside of the analysis of the position and momentum information measures, we have
considered it useful to study these quantities in the product rp-space, characterized
by the probability density f (r, p) = ρ(r)γ (p), where the complexity measures are
defined as

Cr p(LMC) = Dr p Lr p = Cr (LMC)C p(LMC) (12)

and
Cr p(FS) = 2πeIr p Jr p = 2πeCr (FS)C p(FS) (13)

From the above two equations, it is clear that the features and patterns of both LMC
and FS complexity measures in the product space will be determined by those of each
conjugated space.

3 Complexity analysis for the hydrogenic identity SN 2 exchange reaction

For our complexity study we choose a typical nucleophilic substitution (SN 2) reaction:
Ha + CH4 → CH4 + Hb. This chemical process involves only one step in contrast
with the two-step SN 1 reaction [68]. In the anionic form, the SN 2 mechanism can be
depicted as Y − + R X → RY + X− , which is characterized by being kinetically of
second order. For identity SN 2 reactions it has been postulated that the observed sec-
ond order kinetics is the result of passage through the well-known Walden inversion
transition state where the nucleophile displaces the nucleofuge (leaving group) from
the backside in a single concerted reaction step. Evidence has been presented [69]
which shows that the one step mechanism observed for this type of reaction is indeed
characterized by its synchronous and concerted behaviour.

In a previous study for this reaction [68], we have shown that Shannon entropy
in momentum space holds two maxima at the TS vicinity and we associated these
regions to a bond cleavage energy process (BCER) where the necessary energy for
bond breaking is supposed to occur. It was interesting to note that for both entro-
pies (position and momentum) the BCER are located at the same IRC coordinate, in
contrast with the two-stages mechanism of the hydrogenic abstraction reaction [71],
which is indicative of the single step mechanism that characterizes the SN 2 process,
which highlights the localized/delocalized combination of the position/momentum
densities at this particular position of the IRC. At this point, it is interesting to asso-
ciate the one step mechanism of this reaction to the chemical events that take place.
While the nucleophile approaches the molecule the nucleofuge leaves it at unison, i.e.,
bond forming and bond breaking must occur in a concerted and synchronous manner.
Both of these actions increase the energy of the combination: bond breaking requires
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energy (momentum density becomes delocalized, see Ref. [68]) to surmount the repul-
sion between the incoming ionic-complex (nucleophile) into close contact with the
carbon’s bonding shell. As the reaction process goes forward, the energy increases
until a significant bonding begins to occur between the nucleophile and the molecule
through a charge transfer (CT) process by releasing the necessary energy to break the
carbon-nucleofuge bond which stabilizes the molecule at the transition state.

The electronic structure calculations performed in the present study were carried
out with the Gaussian 03 suite of programs [78]. Reported TS geometrical parameters
for the SN 2 exchange reactions were employed [79]. Calculations for the IRC were
performed at the MP2/6-311++G** level of theory, which generated 93 points evenly
distributed between the forward and reverse directions of the IRC. Next, a high level
of theory and a well-balanced basis set (diffuse and polarized orbitals) were chosen for
determining all of the properties for the chemical structures corresponding to the IRC.
Thus, the QCISD(T) method was employed in addition to the 6-311++G** basis set.
All information-theoretic quantities are calculated in position and momentum spaces
for the IRC path of the hydrogenic identity SN 2 exchange reaction and obtained by
employing software developed in our laboratory along with 3D numerical integration
routines [81], and the DGRID suite of programs [74]. A relative tolerance of 1×10−5

was set for the numerical integrations unless otherwise be stated [81].
In order to perform an information-theoretic characterization of the chemical pro-

cess we have undertaken a complexity analysis since this type of studies provide with
complementary sources of information, i.e., D (departure from uniformity) with L
(departure from localizability) through the C(LMC) and also with I (departure from
disorder) and J (departure from localizability) through the C(FS) measure (Eqs. 2, 5,
9 and 10). In the following sections we will employ global and local quantities so as
to provide with a complete description of the identity SN 2 reaction.

3.1 Information measures

In previous works [68–70], we employed Shannon and Fisher Information measures
as chemical phenomenological descriptors for elementary reaction processes. In par-
ticular for the identity SN 2 reaction, we described regions of chemical interest, the
bond cleavage energy region (BCER) and the bond breaking/forming one (B-B/F). To
the end of complementing the information above we will show throughout this section
some additional features of the chemical reaction from the perspective of the disequi-
librium measure (D). This quantity (Dr ) has been depicted in Fig. 1, along with the
Fisher information in position space, for comparison purposes. As a general observa-
tion we may note that Dr closely resemblances the global measure of Shannon in the
product space [68] and hence predicts a full description of the chemical phenomena,
i.e., the BCER, the B-B/F and the CT processes. On the other hand, Ir indicates that
beyond the BCER region there is a significant structural change at Rx ≈ −1.7 where
the inversion of configuration initiates in such a manner that the most disordered struc-
ture (minimum value of Ir ) corresponds to the ionic complex structure that has gained
sufficient energy (BCER) for bond breaking (Rx ≈ −1.0) and charge transferring
(Rx ≈ −0.5). Afterwards, the chemical structure becomes the most ordered at the
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Fig. 1 Disequilibrium (black open triangles) and Fisher Information (red open circles) in position space

TS where the Ir is maximum. Next, a closer look to the disequilibrium measure in
position space describes the chemical route through the concurrent processes occur-
ring in the transient zone [68]. This is located at the onset of the BCER region where
the molecule inverts its geometrical configuration (at around Rx ≈ −1.7) which is
characterized by a less uniform electron distribution described by local maxima of
Dr . In contrast, note that neither I nor S [68–70], describe the bond breaking nor the
CT regions. It is worth observing that Dr holds global maxima at the CT/TS regions
which indicates non uniform probability distributions, as compared with the rest of
the chemical process, with a slight minimum at the TS, indicating the expected equi-
probable distribution at this point. Therefore, the chemical picture describes a process
where the bond breaking drives the electronic distribution to a minimum Dr , tending
to equiprobability and uniformity; however, according to Fig. 1, the charge transfer
phenomenon softens the inertia to equiprobability by augmenting disequilibrium due
to the increasing electrostatic repulsion between the nucleophile and the nucleofuge
at the vicinity of the TS as the reaction develops, and hence the observed non uniform
region with a faint equiprobable structure at the TS (minimum).

In Fig. 2, we have depicted the disequilibrium and the Fisher measures in momen-
tum space. In contrast with the quantities in position space we note that both, Dp and
Ip, only describe the BCER and the TS regions in that, at the former, the momentum
space density shows the least ordered distribution and the most equiprobable according
to the Fisher and the disequilibrium measures, respectively. At the TS, both quantities
display maxima, revealing a chemical distribution which is highly ordered and the least
uniform among the rest at the vicinity, which corresponds to a highly localized density
in momentum space thus characterizing the TS [68]. Also note that Dp shows a com-
plex behavior in the regions associated to the B-B/F and the CT (see discussion above)
in that the slope of the disequilibrium measure in between the B-B/F (Rx ≈ −1.0)
and the CT (Rx ≈ −0.5) diminishes, which is linked to the discussion above in that
the charge transfer phenomenon lessens the inertia to non equiprobability due to the
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Fig. 2 Disequilibrium (purple open diamonds) and Fisher Information (red open circles) in momentum
space

increasing electrostatic repulsion between the nucleophile and the nucleofuge at the
vicinity of the TS as the reaction develops.

3.2 Information planes

In the search of any joint features of disorder–uniformity (I–D), uniformity–localiz-
ability (D–L), and disorder–localizability (I–J) for the chemical course of the reaction
we have found useful to plot the contribution of I and D to the I − D plane, D and
L to the total LMC complexity, and similarly with I and J to the FS complexity.

Notwithstanding that not all information products are good candidates to form com-
plexity measures, i.e., to preserve the desirable properties of invariance under scaling,
translation and replication [18,19,75], we have found interesting to study the plane
I − D, with the purpose of analyzing patterns of disorder − uni f ormity. In Figs. 3
to 5 we have analyzed the phenomenological description of the reaction through the
Ir − Dr , Dr − Lr , Ir − Jr planes, respectively. Our analysis starts with the Ir − Dr

plane, that is depicted in Fig. 3, from which we may note that at the R/P the position
density is the most equiprobable with the highest uniformity; as the reaction proceeds
the order decreases at the expense of diminishing the uniformity; this behavior is
almost linear along the reaction path until the BCER is reached. Up to this point,
the molecular structure of the ionic complex solely rearranges in preparation for the
concurrent processes (B–B/F and the CT) occurring at the transient region. At the
onset of the BCER (commencement of the inversion of configuration) the Ir − Dr

plane reverts the quasi-linear tendency observed before, i.e., the uniformity of the dis-
tribution in position space augments as well as its order; this occurs until the bond
breaking occurs at Rx ≈ −1.0. Afterwards, the uniformity diminishes and the order
increases in a non-linear way. At the vicinity of the TS the disequilibrium remains
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Fig. 3 Fisher-disequilibrium plane in position space along the IRC

Fig. 4 Disequilibrium-Shannon plane in position space along the IRC

fairly constant at the expense of increasing order until the TS is reached. After this
point the process gets reverted. Therefore, the Ir − Dr plane shows that the non-linear
tendency observed from BCER to TS indicates the presence of chemical phenom-
ena (concurrent processes); i.e. all the electronic arranges that conveys to a chemical
reaction proceed in this transient region.

Note that in Figs. (4) and (7) we have plotted (in a double-logarithmic scale) the
Dr – Lr and Dp – L p planes for the chemical reaction. At this point it is worth men-
tioning that there is a rigorous lower bound to the associated C(L MC) complexity,
given by Eq. ??eq6), which is for both spaces. From both Figures we may observe
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Fig. 5 Fisher-Shannon plane in position space along the IRC

that the D–L plane is clearly separated into two regions, according to the inequality
(valid for position, momentum as well as product spaces), and the region below the
line (equality) corresponds with the forbidden region. Parallel lines to this bound rep-
resent isocomplexity regions, showing that an increase (decrease) in uncertainty, L,
along them is compensated by a proportional decrease (increase) of disequilibrium,
and higher deviations from this frontier are associated with greater LMC complexities.

The behavior of the Dr − Lr plane is shown in Fig. (4) in a log-log scale. From
this we might observe two different tendencies for D − L complexity in that one can
distinguish a zone delimitated by the R/P and BCER regions in which a quasilinear
tendency is observed, i.e., this region appears to be more isocomplex than the rest of
the chemical route as compared to the C(L MC) bound also shown in Fig. (4), indicat-
ing the rearranging of the ionic complex molecule when the reactives approach each
other. At this stage, the information-theoretic description shows that the position space
distribution augments its localizability by lessening its uniformity until the BCER is
reached. Beyond this point, from BCER to B-B/F, the informational behavior departs
from quasi-isocomplexity by diminishing localizability at the expense of increasing its
uniformity. Afterwards, the position density tends to the most delocalized and uniform
distribution at the IRC. It is worthy to note that at the vicinity of the TS the disequi-
librium measure appears to remain constant until the TS is reached very much alike
to the Ir – Dr plane analyzed before.

In Figs. (5) and (8) we have plotted (in a double-logarithmic scale) the Ir – Jr and
Ip – Jp planes for the chemical reaction. At this point it is worth mentioning that there
is a rigorous lower bound to the associated C(FS) complexity, given in Eq. (11), which
is valid for both spaces.

Continuing with the analysis, now for the Ir − Jr plane, we observe similar features
(Fig. 5) as compared with the planes above discussed in that two tendencies are clearly
shown. From the R/P to the BCER a quasi-linear behavior is observed, i.e., increase of
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Fig. 6 Fisher-disequilibrium plane in momentum space along the IRC

localizability and disorder whereas in the second stage the complexity pattern is much
more intricate and is characterized by a simultaneous augment of delocalizability and
order as the reaction proceeds in the forward direction of the reaction.

On the other hand, for the complementary space, we may note some general fea-
tures from the different planes: Ip − Dp, Dp − L p, and Ip − Jp. In all of them we
might observe two energetic stages: from the R/P to BCER the ionic complex is gain-
ing energy to surmount the barrier at the TS, i.e., at the beginning of the reaction the
electronic momentum distributions get delocalized by gaining uniformity and dimin-
ishing order (Ip − Dp), or augmenting uncertainty (either Dp − L p or Ip − Jp). In
the second stage, the necessary energy to reach B–B/F and CT, is released from the
BCER to the TS, by gaining momentum density localization, augmenting order or
diminishing uniformity (see Figs. 6,7,8).

3.3 Complexities

In the search of joint patterns of uniformity-localizability through C(L MC) and dis-
order-localizability through C(F S) we have depicted in Figs. 9 and 10 the values for
these complexity measures in position and momentum spaces, respectively. The gen-
eral observation from Fig. 10 is that both complexity measures behave similarly in posi-
tion space. They reflect a zone where the process is less complex, from R/P to BCER,
than the region delimited from BCER to TS; in agreement with the analysis of the infor-
mation planes for the density in position space. Strictly speaking, for this chemical case,
as the reaction proceeds both complexity measures, C(LMC) and C(FS), decrease
until the BCER is reached, after this point the reaction evolves in a more complex
manner, reflecting the fact that it is in this region where all the chemically meaningful
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Fig. 7 Disequilibrium-Shannon plane in momentum space along the IRC

Fig. 8 Fisher-Shannon plane in momentum space along the IRC

phenomena occur through charge depletion/accumulation, yielding concurrent pro-
cesses such as: BCER, bond breaking/forming and charge transfer, which can only be
distinguished through information measures, planes and complexities. It is interesting
to note that all of them are necessary to chemically describe the Walden inversion of
configuration. In Figs. 9 and 10, we can summarize the observations above in that
both complexity measures witness the chemical zone of interest through an augment
of complexity entirely at the transient region , i.e., from the BCER to the TS.

In particular, we can mention the fact that in momentum space the phenomenologi-
cal description is more intricate than in position space. Complexity measures describe
different aspects of the distributions due to their local/global behavior (Fig. 10). For
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Fig. 9 C(L MC) (blue open triangles) and C(F S) (red open circles) in position space along the IRC

Fig. 10 C(L MC) (blue open triangles) and C(F S) (red open circles) in momentum space along the IRC

instance, the LMC quantity in momentum space describes a process in which complex-
ity lessens as the reaction evolves (R/P to BCER), once the inversion of configuration is
about to occur (at the onset of BCER) the complexity in momentum space increases.
At the transient zone, the chemical description passes through the B-B/F which is
accurately described by C(FS) whereas the charge transfer is also described by the
C(FS).

Continuing with the analysis we account with valuable data to establish a rela-
tionship between the information-theoretic features of the reaction to that of the total
energy. In contrast with a previous study on the hydrogenic reaction [71], where the

123



1896 J Math Chem (2012) 50:1882–1900

-5 -4 -3 -2 -1 0 1 2 3 4 5

118

120

122

124

126

128

130

IRC

C
rp
(L

M
C

)

185

190

195

200

205

210

C
rp (F

S
)

Fig. 11 C(L MC) (blue open triangles) and C(F S) (red open circles) in the product space (r p) along the
IRC

Fig. 12 C(L MC) (blue open triangles) and C(F S) (red open circles) in the product space (r p) versus the
total energy

Cr p(LMC) and Cr p(FS) complexity values as a function of the energy display a mono-
tonic decreasing behavior for both of them, the situation for the SN 2 reaction of the
present study is totally distinct in that there are more concurrent processes in this reac-
tion than in the SN 1 and hence, the relation between the complexity measure in product
space and the total energy is not as simple as in the abstraction reaction [71]. Figures
11 and 12 show the behavior of the complexity measures, LMC and FS, in product
space versus the IRC and the energy, respectively. In Fig. 11, we observe that all the
concurrent processes are present, i.e., BCER, B-B/F, CT and the TS. On the other hand,
the values depicted in Fig. 12 might be interpreted as follows: as the reaction evolves
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both complexities diminish at the expense of augmenting the energy up to a region
of maximum disorder (Fisher in momentum space tends to a minimum, see Fig. 2)
for the Cr p(FS) measure and to a region of maximum uniformity (disequilibrium in
momentum space tend to a minimum, see Fig. 2). Then the energy augments at the
expense of increasing both complexities up to the TS is reached. It is worth noting that
at the vicinity of the TS, the Cr p(FS) complexity possesses a slight maximum which
corresponds to the CT region, at this onset the Fisher in momentum space tends to a
maximum order where the complex ionic structure initiates the charge transferring.
In comparison, for the abstraction reaction in position space, the energy profile bears
the joint features of C(LMC) (uniformity-localizability) and C(FS) (disorder-localiz-
ability), for the exchange reaction the energy profile can not be associated in a simple
manner to any of the complexity measures.

4 Conclusions

In this work, we have investigated the complexity of the SN 2 abstraction reaction by
means of information-theoretic functionals D, L , I , J and joint information-theoretic
measures, i.e., the I − D, D − L and I − J planes and the Fisher-Shannon and LMC
shape complexities.

The analysis of the information-theoretic functionals of the one-particle density was
performed in position (r) and momentum (p) spaces. These measures were found to
reveal all the chemically significant aspects of the course of the reaction, i.e., the
reactant/product regions, the bond cleavage energy region, the bond breaking/forming
region and the transition state. Besides, the information-theoretic concepts of unifor-
mity, disorder, localizability were useful to reveal the chemical phenomena of energy
accumulation/releasing.

The contribution of this study resides in the phenomenological description of the
chemical reaction through complexity concepts. Thus, throughout the analysis we
related information measures of disequilibrium, Fisher and Shannon to the chemical
concurrent processes that undergo the reaction through concepts such as uniformity,
order and delocalization. Hence, we can assign the R/P regions to chemical densities
characterized by high uniform and ordered distributions, the BCER to non-uniform
and low ordered local densities, the B-B/F to locally uniform distributions, the CT to
globally non-uniform distributions and the TS by locally uniform and globally ordered
distributions.

On the other hand, the chemical route can be distinguished by two different stages
of complexities. In position space, from the R/P to BCER the complexities hold a
quasi-linear tendency whereas from the BCER to the TS (throughout the transient
zone) the complexity behavior is much more intricate, showing all the concurrent pro-
cesses of BCER, B-B/F, CT and the TS. On the other side, in momentum space, from
the R/P to the BCER, complexities show a zone of energy accumulation, whereas in
the transient zone, this energy is released to convey the concurrent processes above
mentioned.

The results of this study indicate that further investigations are necessary in order
to improve our understanding of the complexity for chemical reactions along the lines
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of analyzing different reaction mechanisms, other information-theoretic functionals,
and more intrincated aspects of the energy profile, among others. We think that the
strategy followed in this study might be useful in more complex cases by describing
the phenomenological behavior of the chemical probe regarding their local and global
features by use of the three key information measures, i.e., Shannon, Fisher and dis-
equilibrium. Then, the various information planes and complexity measures of the
process might be resolved in a feasible manner.
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